Pentoxifylline prevents loss of PP2A phosphatase activity and recruitment of histone acetyltransferases to proinflammatory genes in acute pancreatitis.

نویسندگان

  • Juan Sandoval
  • Javier Escobar
  • Javier Pereda
  • Natalia Sacilotto
  • José Luis Rodriguez
  • Luis Sabater
  • Luis Aparisi
  • Luis Franco
  • Gerardo López-Rodas
  • Juan Sastre
چکیده

Mitogen-activated protein kinases (MAPKs) are considered major signal transducers early during the development of acute pancreatitis. Pentoxifylline is a phosphodiesterase inhibitor with marked anti-inflammatory properties through blockade of extracellular signal regulated kinase (ERK) phosphorylation and tumor necrosis factor alpha production. Our aim was to elucidate the mechanism of action of pentoxifylline as an anti-inflammatory agent in acute pancreatitis. Necrotizing pancreatitis induced by taurocholate in rats and taurocholate-treated AR42J acinar cells were studied. Phosphorylation of ERK and ERK kinase (MEK1/2), as well as PP2A, PP2B, and PP2C serine/threonine phosphatase activities, up-regulation of proinflammatory genes (by reverse transcription-polymerase chain reaction and chromatin immunoprecipitation), and recruitment of transcription factors and histone acetyltransferases/deacetylases to promoters of proinflammatory genes (egr-1, atf-3, inos, icam, il-6, and tnf-alpha) were determined in the pancreas during pancreatitis. Pentoxifylline did not reduce MEK1/2 phosphorylation but prevented the marked loss of serine/threonine phosphatase PP2A activity induced by taurocholate in vivo without affecting PP2B and PP2C activities. The rapid loss in PP2A activity induced by taurocholate in acinar cells was due to a decrease in cAMP levels that was prevented by pentoxifylline. Pentoxifylline also reduced the induction of early (egr-1, atf-3) responsive genes and abrogated the up-regulation of late (inos, icam, il-6, tnf-alpha) responsive genes and recruitment of transcription factors (nuclear factor kappaB and C/EBPbeta) and histone acetyltransferases to their gene promoters during pancreatitis. In conclusion, the beneficial effects of pentoxifylline--and presumably of other phosphodiesterase inhibitors--in this disease seem to be mediated by abrogating the loss of cAMP levels and PP2A activity as well as chromatin-modifying complexes very early during acute pancreatitis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein phosphatase 2A activity affects histone H3 phosphorylation and transcription in Drosophila melanogaster.

Transcriptional activation of the heat shock genes during the heat shock response in Drosophila has been intimately linked to phosphorylation of histone H3 at serine 10, whereas repression of non-heat-shock genes correlates with dephosphorylation of histone H3. It is then possible that specific kinase and/or phosphatase activities may regulate histone phosphorylation and therefore transcription...

متن کامل

Pentoxifylline ameliorates cerulein-induced pancreatitis in rats: role of glutathione and nitric oxide.

Reactive oxygen radicals, nitric oxide, and cytokines have been implicated in the initiation of pancreatic tissue damage and impairment of the pancreatic microcirculation in acute pancreatitis. Pentoxifylline is a methylxanthine derivative with rheologic and marked anti-inflammatory properties and inhibits the production of proinflammatory cytokines. We have examined whether pentoxifylline amel...

متن کامل

The Interplay between PP2A and microRNAs in Leukemia

Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase family whose members have been implicated in tumor suppression in many cancer models. In many cancers, loss of PP2A activity has been associated with tumorigenesis and drug resistance. Loss of PP2A results in failure to turn off survival signaling cascades that drive drug resistance such as those regulated by protein kinase B. PP2A...

متن کامل

PP2A phosphatase activity is required for stress and Tor kinase regulation of yeast stress response factor Msn2p.

In response to stress and nutrient starvation, the Saccharomyces cerevisiae transcription factor Msn2p accumulates in the nucleus and activates expression of a broad array of genes. Here, we analyze the role of the Tor (target of rapamycin) signaling pathway in mediating these responses. Inactivation of the Tor pathway component Tap42p using tap42(Ts) alleles causes a sustained nuclear localiza...

متن کامل

Therapeutic Re-Activation of Protein Phosphatase 2A in Acute Myeloid Leukemia

Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that is required for normal cell growth and development. PP2A is a potent tumor suppressor, which is inactivated in cancer cells as a result of genetic deletions and mutations. In myeloid leukemias, genes encoding PP2A subunits are generally intact. Instead, PP2A is functionally inhibited by post-translational modifications of its ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 331 2  شماره 

صفحات  -

تاریخ انتشار 2009